M.A./M.Sc. Examination 2018
 Semester - I
 Mathematics
 Course: MMC-15 (Old)
 (Classical Mechanics)
 (For Back Candidates)

Time: Three Hours
Full Marks: 40
Questions are of value as indicated in the margin.
Notations and symbols have their usual meanings.
Answer any four.

1. Derive relations among velocities and accelerations of the motion of a particle observed with reference to two frames, one is rotating relative to other having common origin.
2. Obtain the equation of motion of a particle moving under the action of gravity near the Earth surface (take the rotation of the Earth about its axis into account).
3. Derive expressions of kinetic energy and angular momentum involved in the rotational motion of a rigid body.
4. Explain Euler's angle. Hence derive expression for angular velocity of rotational motion of rigid body in terms of Euler's angle and their time derivative.
5. Derive Euler's equation of motion of rigid body and find its solution when the body is symmetric.
6. Define generalized coordinate of mechanical system? State D'Alembert's principle. Derive Lagrange's equation of motion of second kind.
$1+1+3$
7. State Legendre's theorem in its general form and use result of this theorem of derive Hamilton's equation of motion of a holonomic mechanical system. $2+3$
8. Define generalized coordinate and obtain kinetic energy, potential energy, Lagrangian, Legrange's equation of motion and its solution for the motion of a particle along a line under the influence of a force directed towards a fixed point (center) on the line with a magnitude proportional to the distance of the particle from the center.
9. Show that Lagrangian of a system with holonomic constraints is not unique. Hence verify whether $L(x, \dot{x})=\frac{1}{2} \dot{x}^{2}$ and $L(x, \dot{x})=\log (\dot{x})$ may be treated a inequivalent Lagrangian for the free motion of a particle along a line.
$2+1+2$
10. Define Hamilton's principal function. Derive equation for it. Show that Hamilton's principal function may be regarded as generating function of a special type of canonical transformations. Discuss the significance of the transformation. $1+1+2+1$
11. Define Poisson bracket. Show that Poisson bracket follows Jacobi identity.
12. What do you mean by a constant of the motion of a mechanical system? Prove that Poisson bracket of two constant of motion is also a constant of the motion. $1+4$
13. Study the small oscillation around the stable equilibrium point of a mechanical system moving under the influence of a force described by the potential

$$
V(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)-x y . \quad 1+4
$$

14. Write down the correspondence among generalized coordinate, momenta and associated operators on Hilbert space for the quantum mechanical description of motion of a particle on a line. Hence derive the Schrödinger equation for this system.
