M.A./M.Sc. Examination 2018
 Semester - I
 Mathematics
 Course: MMC-15 (New)
 (Partial Differential Equations)

Time: Three Hours
Full Marks: 40
Questions are of value as indicated in the margin.
Notations and symbols have their usual meanings.
Answer any four questions.

1. a) Is the solution of the Cauchy problem $p+q=u^{2}$ with $u(x, 0)=1,-\infty<x<\infty$ unique? Justify your answer. $\left[u=u(x, y), p=\frac{\partial u}{\partial x}, q=\frac{\partial u}{\partial y}\right]$
$2+1=3$
b) Find a solution of $\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0$, that satisfies the given initial condition: $\left.u(x, 0)=\sin x, \frac{\partial u}{\partial t}\right]_{(x, 0)}=a \cos x,-\infty<x<\infty$.
c) Reduce the PDE $\frac{\partial^{2} u}{\partial x^{2}}+x \frac{\partial^{2} u}{\partial y^{2}}=0, x<0 \forall x, y$ to canonical form.
2. a) Find the solution of the PDE $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{-x} \cos y$, which tends to zero as $x \rightarrow \infty$ and has the value $\cos y$ when $x=0$.
b) Solve the following PDE by using Monge's method:

$$
\begin{equation*}
\frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial x \partial y}=\left(\frac{\partial u}{\partial y}\right)^{3} \tag{5}
\end{equation*}
$$

3. a) Use a separable solution $u(x, y)=f(x)+g(y)$ to solve the PDE

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{\partial u}{\partial y}+x^{2}=0 \tag{2}
\end{equation*}
$$

b) What do you mean by Neumann type boundary conditions for a PDE?

Hence prove that if the Neumann problem for a bounded region has a solution, then it is either unique or it differs from one another by a constant only. $1+2=3$
c) Use the method of characteristics to find the solution of the first order PDE

$$
\begin{equation*}
x^{2} \frac{\partial u}{\partial x}+x y \frac{\partial u}{\partial y}=u^{2} \tag{5}
\end{equation*}
$$

which passes through the curve $u=1, x=y^{2}$. Determine where this solution becomes singular.
4. a) Using the Laplace transform method, solve the following IBVP:

$$
\begin{aligned}
& \text { PDE }: \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<2018, t>0 \\
& \text { BC's }: u(0, t)=u(2018, t)=0, t>0 \\
& \text { IC's } \left.: u(x, 0)=\sin (\pi x), \frac{\partial u}{\partial t}\right]_{(x, 0)}=-\sin (\pi x), 0<x<2018 .
\end{aligned}
$$

b) Use finite Fourier sine transform to solve:

$$
\begin{equation*}
\nabla^{2} u=0, \nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
& u(x, 0)=0, u(x, \pi)=2018 \\
& u(0, y)=0=u(\pi, y) \text { for every } y \\
& u(x, y) \text { is bounded. }
\end{aligned}
$$

5. a) State and prove maximum-minimum principle for a function $u(x, y)$ which is continuous in a closed region $\overline{\mathbb{R}}$ and satisfies the Laplace equation $\nabla^{2} u=0$ in the interior of \mathbb{R}.
b) Obtain the solution by separation of variables method of the following IBVP for the PDE:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=9 \frac{\partial u}{\partial t}, 0<x<L, t>0 \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& u(x, 0)=2 \sin \left(\frac{3 \pi x}{L}\right), 0 \leq x \leq L \\
& u(0, t)=0=u(L, t) \text { for } t>0
\end{aligned}
$$

6. a) Write the Hadamard's conditions for a well-posed PDE.
b) Solve the following exterior Dirichlet problem for a circle:

$$
\mathrm{PDE}: \nabla^{2} u=0, r>a, 0 \leq \theta<2 \pi,
$$

$$
\mathrm{BC}: u(a, \theta)=f(\theta), 0 \leq \theta<2 \pi
$$

u must be bounded as $r \rightarrow \infty$.

