# M.A./M.Sc. Examination 2018 <br> Semester - I <br> Mathematics <br> Course: MMC-13 (New) <br> ( Algebra-I ) 

Time: Three Hours
Full Marks: 40
Questions are of value as indicated in the margin.
Notations and symbols have their usual meanings.
Answer any four questions.

1. a) Let $G_{1}$ and $G_{2}$ be two groups and $a \in G_{1}, b \in G_{2}$. Show that $0((a, b))=\operatorname{lcm}(0(a), 0(b))$. Also find the number of generators of $\mathbb{Z}_{30} \times \mathbb{Z}_{77}$. 3
b) Show that the group $(\mathbb{Q},+)$ can not be expressed as an internal direct product of two nontrivial subgroups.2
c) Find the conjugacy class equation of $S_{4}$. 2
d) Let $H$ be a subgroup of a group $G$. Show that $H$ is a normal subgroup if and only if $H$ is a union of conjugacy classes of $G$.
2. a) State and prove Cauchy's theorem for abelian groups.

4
b) Let $G$ be a noncyclic group of order 21. Find the number of elements of order 3 in $G$.
c) Let $G$ be a finite group and $p$ be the smallest prime divisor of $|G|$. Then prove that every subgroup $H$ of $G$ of index $p$ is normal in $G$.
3. a) Let $G$ be a group of order $p^{n} m$ where $p$ is a prime and $n \in \mathbb{N}$. If $H$ is a subgroup of $G$ of order $p^{i}, i<n$ then show that $G$ has a subgroup $K$ of order $p^{i+1}$ such that $H \subseteq K$. 2
b) Show that every group of order 99 is abelian. 3
c) Let $H$ and $K$ be two subgroups of a group $G$ such that $H$ is normal in $G$. If both $H$ and $K$ are solvable then show that $H K$ is solvable.
d) Let $G$ be a group. Prove that $G$ is solvable if and only if $G^{(n)}=\{e\}$ for some positive integer $n$. Hence or otherwise show that $S_{5}$ is not solvable.
4. a) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T(x, y)=(x+y, x-y)$ for all $(x, y) \in \mathbb{R}^{2}$. Find the image of the line $2 x+3 y=6$ under $T$.
b) Find the rank of the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ defined by $T(p(t))=\left(\begin{array}{cc}f(0)+f(1) & 0 \\ 0 & f(2)\end{array}\right)$.
c) Let $T: V \rightarrow V$ be a linear transformation. If the matrix representations of $T$ relative to any basis are the same then show that $T=c I_{V}$. For some $c \in F$. Does the converse hold?
c) Let $P$ be the change of basis matrix from a basis $\beta$ into the basis $\beta^{\prime}$. Show that $P$ is invertible and $P^{-1}$ is the change of basis matrix from $\beta^{\prime}$ into $\beta$.
5. a) With the help of a suitably defined mapping from $V$ onto $V^{* *}$, show that $V$ and $V^{* *}$ are isomorphic.
b) Let $V$ be a finite dimensional vector space of dimension $n$. Show that $f, g \in V^{*}$ are linearly independent if and only if $\operatorname{dim}(\operatorname{ker} f \cap \operatorname{ker} g)=n-2$. What happens, if we consider three linear functionals?
c) Let $U=L(\{(1,2,1),(2,-3,1)\})$. Find $U^{0}$.
6. a) Find all eigen values and a basis of the eigen space of the eigen value of algebraic multiplicity 2 of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$. 4
b) Let $T: V \rightarrow V$ be a linear transformation. If $W$ is a $T$-invariant subspace of $V$, prove that $\chi_{T_{W}}(t) \mid \chi_{T}(t)$. Hence or otherwise prove that geometric multiplicity of an eigen value cannot exceed its algebraic multiplicity.
c) Let $T: V \rightarrow V$ be a linear transformation such that $V$ is $T$-cyclic. If $S: V \rightarrow V$ is a linear transformation such that $S T=T S$, then show that $S=g(T)$ for some polynomial $g(t)$.

