## M.A./M.Sc. Examination 2018

## Semester - I Mathematics Course: MMC-13 (New) ( Algebra-I )

Time: Three Hours Full Marks: 40

Questions are of value as indicated in the margin. Notations and symbols have their usual meanings.

Answer *anv four* questions.

| 1. | a)  | Let  | $G_{\scriptscriptstyle  m l}$ | and     | $G_2$  | be    | two    | groups     | and    | $a \in G_1, b \in G_2$ .       | Show                                 | that |
|----|-----|------|-------------------------------|---------|--------|-------|--------|------------|--------|--------------------------------|--------------------------------------|------|
|    |     | 0((a | (a,b)                         | = lcm(0 | (a), 0 | (b)). | Also f | ind the nu | mber o | f generators of $\mathbb{Z}_3$ | $_{50}$ $\times$ $\mathbb{Z}_{77}$ . | 3    |
|    | 1 \ | CI   | 41 4                          | 41      | (0     | \     |        | 1          | 1      | 1 1                            | 1 4                                  | C    |

- b) Show that the group  $(\mathbb{Q},+)$  can not be expressed as an internal direct product of two nontrivial subgroups.
- c) Find the conjugacy class equation of  $S_4$ .
- d) Let *H* be a subgroup of a group *G*. Show that *H* is a normal subgroup if and only if *H* is a union of conjugacy classes of *G*.
- 2. a) State and prove Cauchy's theorem for abelian groups.
  - b) Let G be a noncyclic group of order 21. Find the number of elements of order 3 in G.
  - c) Let G be a finite group and p be the smallest prime divisor of |G|. Then prove that every subgroup H of G of index p is normal in G.
- 3. a) Let G be a group of order  $p^n m$  where p is a prime and  $n \in \mathbb{N}$ . If H is a subgroup of G of order  $p^i$ , i < n then show that G has a subgroup K of order  $p^{i+1}$  such that  $H \subseteq K$ .
  - b) Show that every group of order 99 is abelian.
  - c) Let *H* and *K* be two subgroups of a group *G* such that *H* is normal in *G*. If both *H* and *K* are solvable then show that *HK* is solvable.
  - d) Let G be a group. Prove that G is solvable if and only if  $G^{(n)} = \{e\}$  for some positive integer n. Hence or otherwise show that  $S_5$  is not solvable.
- 4. a) A linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is given by T(x,y) = (x+y, x-y) for all  $(x,y) \in \mathbb{R}^2$ . Find the image of the line 2x+3y=6 under T.
  - b) Find the rank of the linear transformation  $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$  defined by

$$T(p(t)) = \begin{pmatrix} f(0) + f(1) & 0 \\ 0 & f(2) \end{pmatrix}.$$

- c) Let  $T:V \to V$  be a linear transformation. If the matrix representations of T relative to any basis are the same then show that  $T=c\ I_V$ . For some  $c\in F$ . Does the converse hold?
- c) Let P be the change of basis matrix from a basis  $\beta$  into the basis  $\beta'$ . Show that P is invertible and  $P^{-1}$  is the change of basis matrix from  $\beta'$  into  $\beta$ .
- 5. a) With the help of a suitably defined mapping from V onto  $V^{**}$ , show that V and  $V^{**}$  are isomorphic.
  - b) Let V be a finite dimensional vector space of dimension n. Show that  $f, g \in V^*$  are linearly independent if and only if  $\dim(\ker f \cap \ker g) = n 2$ . What happens, if we consider three linear functionals?
  - c) Let  $U = L(\{(1,2,1), (2,-3,1)\})$ . Find  $U^0$ .
- 6. a) Find all eigen values and a basis of the eigen space of the eigen value of algebraic multiplicity 2 of  $T: \mathbb{R}^3 \to \mathbb{R}^3$  defined by T(x, y, z) = (2x + y, y z, 2y + 4z).
  - b) Let  $T: V \to V$  be a linear transformation. If W is a T-invariant subspace of V, prove that  $\chi_{T_W}(t) | \chi_T(t)$ . Hence or otherwise prove that geometric multiplicity of an eigen value cannot exceed its algebraic multiplicity.
  - c) Let  $T:V \to V$  be a linear transformation such that V is T-cyclic. If  $S:V \to V$  is a linear transformation such that ST = TS, then show that S = g(T) for some polynomial g(t).