M.A./M.Sc. Examination 2018

Semester - III Mathematics Course: MMO-31 (P2) (Advanced Topology-I)

Time:	Three Hours Full Marks: 40
	Questions are of value as indicated in the margin. Notations and symbols have their usual meanings. Answer <i>any three</i> questions from Question Nos. 1 to 5
ŕ	Prove that a topological space X is Hausdorff iff limit of a convergent net in X is unique. Let X and Y be topological spaces and $f: X \to Y$ be a function. Prove that f is continuous at x_0 iff whenever a net S converges to x_0 , $f \circ S$ converges to $f(x_0)$. 4 Prove that a filter \Im in X is an ultrafilter iff for any $A, B \subset X$, $A \cup B \in \Im \Rightarrow A \in \Im$ or $B \in \Im$.
,	Prove that in a locally compact Hausdorff space compact neighbourhoods form a local base. 3 Prove that quotient space of a locally connected space is locally connected. 4 Prove that in a space (X,τ) every sequence has a cluster point iff every infinite set has an w -limit point. Hence show that every sequentially compact space is $(B-W)$ compact. 4+1
3. a) b)	Prove that product of a family of topological spaces is compact iff each component space is compact. 1+4 State and prove Embedding Lemma. 1+6
	Let $f: X \to [0,1]$ be a continuous function and for $t \in R$, $F_t = \{x \in X; f(x) < t\}$. Prove that $\{F_t; t \in \mathbb{R}\}$ is a family of open sets in X such that $\overline{F}_s \subset F_t$ if $s < t$ and $f(x) = \inf\{t \in Q; x \in F_t\}$.
5. a) b)	Describe one-point compactification of a topological space. Prove that one-point compactification of a space is Hausdorff iff the space is locally compact and Hausdorff. Prove that every locally compact Hausdorff space is a Tychonoff space. 5+2
6. Ar	aswer anv two

a) Give an example of a T_1 space X and a net in X converging to two distinct points.

b) Prove that a connected T_4 space with at least two points must be uncountable.

c) In a discrete space show that the neighbourhood filters are ultrafilters.

2

2

2