Use separate answer script for each unit
M.A./M.Sc. Examination 2018

Semester - III
Mathematics
Course: MMC-34 (New)
(Calculus of Variations and Special Functions)
Time: Three Hours

Full Marks: 40
Questions are of value as indicated in the margin.
Notations and symbols have their usual meanings.

Unit-I (Marks: 20)

Answer any two questions.

1. a) Show that a necessary condition for the functional

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x
$$

to be extremum is $\quad F_{y}-\frac{d}{d x} F_{y^{\prime}}+\frac{d^{2}}{d x^{2}} F_{y^{\prime \prime}}=0$,
where the 'dash' denotes differentiation with respect to x.
b) Find the stationary function of

$$
I(y, z)=\int_{0}^{\pi / 2}\left[\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}+2 y z\right] d x
$$

under the conditions $y(0)=3, y(\pi / 2)=1, z(0)=-3, z(\pi / 2)=-1$.
c) Find the curve with fixed boundary points such that its rotation about the axis of abscissae gives rise to a surface of revolution of minimum surface area.
2. a) Find the stationary function of

$$
\begin{equation*}
I(y)=\int_{0}^{1}\left[\frac{1}{2}\left(y^{\prime \prime}\right)^{2}-y\right] d x \quad \text { with } y(0)=0, y(1)=0 \tag{4}
\end{equation*}
$$

b) Show that sphere is the solid figure of revolution which, for a given surface area, has maximum volume.
c) Reduce the following boundary value problem into a variational problem:

$$
\begin{equation*}
y^{\prime \prime}-y+x=0 \text { with } y(0)=y(1)=0 \tag{2}
\end{equation*}
$$

3. a) Find the curves for which the function

$$
\begin{equation*}
I=\int_{0}^{x_{1}} \frac{\sqrt{1+y^{\prime 2}}}{y} d x \text { with } y(0)=0 \text { can have extrema, if } \tag{4}
\end{equation*}
$$

i) The point $\left(x_{1}, y_{1}\right)$ can be vary along the circle $(x-9)^{2}+y^{2}=9$,
ii) The point $\left(x_{1}, y_{1}\right)$ can vary along the line $y=x-5$.
b) Describe Rayleigh-Ritz method for solving a boundary value problem.
c) Use Galerkin method to solve the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}-y+x=0(0 \leq x \leq 1) \text { with } y(0)=0, y(1)=0 \tag{4}
\end{equation*}
$$

Compare your approximate solution with the exact solution.

Unit-II (Marks: 20)

Answer any two questions.

1. a) Discuss the singularities of the equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \text { at } x=0 \text { and } x=\infty .
$$

b) Express $2-3 x+4 x^{2}$ in terms of Legendre polynomials.
c) Solve the Bessel's equation for the regular singular point at the origin and hence obtain the Bessel's function of first kind of order n.
2. a) Show that Hermite polynomials are orthogonal over $(-\infty, \infty)$ with respect to the weight function $e^{-x^{2}}$.
b) Prove that
i) $e^{x}={ }_{1} F_{1}(\alpha ; \alpha ; x)$
ii) $(1-x)^{-x}={ }_{2} F_{1}(\alpha, \beta ; \beta ; x)$
c) Prove that

$$
\begin{equation*}
\frac{\operatorname{Exp}\{-x t /(1-t)\}}{1-t}=\sum_{n=0}^{\infty} L_{n}(x) t^{n} . \tag{3}
\end{equation*}
$$

3. a) Considering a spring system hit by a hammar at $t=0$, solve the Differential equation $x^{\prime \prime}+x=\delta(t)$.
b) Prove that,

$$
\begin{align*}
P_{n}(\cos \theta)=\frac{1.3 .5 \ldots .(2 n-1)}{2^{n-1} \cdot n!} & {\left[\cos n \theta+\frac{1 . n}{1 .(2 n-1)} \cos (n-2) \theta\right.} \\
& \left.+\frac{1.3 \ldots n(n-1)}{1.2 \ldots .(2 n-1)(2 n-3)} \cos (n-4) \theta+\ldots\right] \tag{3}
\end{align*}
$$

c) For $J_{n}(x)$, prove that
i) $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$
ii) $\frac{d}{d x}\left\{x^{-n} J_{n}(x)\right\}=x^{-n} J_{n+1}(x)$

